

Performance Analysis of Solid State Drives

Chhatragun L. Shinde¹, Shefali P. Sonavane²

Walchand College of Engineering, Sangli, India^{1, 2}

Abstract: Performance as well as reliability are the important factors to consider while designing and deploying solid state drives (SSD) in storage systems. Instead of directly manufacturing the SSD; first needs to get insight into performance analysis using SSD simulation tools and comparing its results. If obtained results are as comparable with real SSD performance results then that is proper way to proceed for manufacturing the SSD. SSDs have pronounced write-history sensitivity, which implies that they have unique requirements for precisely measuring their performances. Primary objectives of performance measurement are to compare and analyze the read/ write ratios, various workloads, interface, stability and security. DiskSim simulator, FlashSim, VSSIM and SSD player tools are used to evaluate the performance of SSD devices employing a variety of Flash Translation Layer (FTL) schemes. This paper compares the performance of SSD with different parameters. The results of comparison show that write operation is more weighted than the read operation.

Keywords: Flash memory; Storage; SSD; Simulation; Performance.

I. INTRODUCTION

Because of NAND flash's faster performance, higher When data is written to the flash memory, the amount of reliability and lower power compared to Hard Disk Drives free pages turns out to be little; therefore the flash (HDDs), additionally its ever-decreasing bit cost, the role of SSDs is extending in both portable mobile and enterprise systems. SSDs emerge to be the next-generation storage medium. Today's SSDs mostly build on NAND flash memories and provide few improvements over hard disks including better I/O performance, higher shock resistance and lower energy consumption. As SSD prices continue to drop nowadays, they have been widely deployed in desktops and large-scale data centers [1].

The study on modeling and simulation has dependably been an essential instrument to give the knowledge in the internal behaviours of the storage device like SSDs and HDDs. It is necessary to understand that the design tradeoffs of SSDs are to narrow down the design spaces and to decrease the prototyping efforts. It is hard to choose whether particular SSD is having great execution on various platforms with various configurations. Better way is to deal with the execution parameters on the same platforms with the same configurations.

II. SSD BASICS

Firmware, flash memory and controller are the important components in SSDs.

A. Flash memory

Flash memory is the essential part of the SSD. Flash memory has the following characteristics: First one is the unit for read and write operations is a page and the unit for an erase operation is a block. Hence, the speeds in the various operations are incredibly different, as shown in Table I. Second, the same physical page in the memory SieveStore [5] just allows the blocks with more miss can be written upon just once after each erase operation. counts than a threshold to enter SSD. Flash-based SSD Third, each block has a limited number of erase cycles [2] caching is a best solution for boosting today's storage [3].

controller must erase a block to recycle free pages. Prior to the controller erases a block, the controller must copy the legitimate data in the block to other empty block; this operation is called as a garbage collection (GC). Table I demonstrates that the block erase time is ten times longer than the page program time. Therefore, the write, erase block operation and GC take extensive number of cycles to complete. As a result, the method for decreasing the number of write operations is very important for the SSDs. If the number of write operations is reduced, the life-time of an SSD is extended and the input output (I/O) processing speed is improved.

TABLE I SPECIFICATIONS OF NAND FLASH MEMORY [9]

Hynix 32GB NAND Flash Chip					
Data Integrity	100,000 erase cycles				
Page Read	0.025 ms				
Page Program Time	0.2 ms				
Block Erase Time	2 ms				

B. Read / Write operations on SSD

Solid state drives have exceptionally constrained write endurance in their entire life cycle [4] compared with traditional cache device - RAM. SSD's restricted write endurance which makes the hardware assumption of cache replacement algorithms no longer applicable. Traditional cache replacement (e.g. LRU) schemes prefer to cache hot data in a short run and obviously, they cannot keep writeefficient data long in SSD cache. Different innovative schemes are proposed in recent years to restrict the writes to SSD cache through a data filter. For instance, systems. A classical method proposed by Kgil et al. [6] is

a two-level cache composed of RAM and a flash memory C. Data Integrity secondary cache, in this case the flash-based disk cache is Following four methods can be used to maintain data divided into isolated read and write regions to improve I/O integrity in enterprise-class SSDs [10]: performance. Read operations on SSDs are generally Error Correction Code (ECC): Which ensures against read quicker than write operations. Because of the way that a NAND memory location cannot be overwritten in a single IO operation (as HDDs can overwrite a single logical block address), a NAND flash write operation can take some steps performed by the SSD controller [7].

III.PERFORMANCE PARAMETERS IN SSDS

important Following are the some performance parameters.

A. Device Interface

Agrawalet. al. provides a detailed study on performance of SSD. They provide detailed discussion on design tradeoffs for NAND flash SSDs by performing simulations using Microsoft Research's SSD extension to 50 DiskSim. They performed analysis on different SSD organizations using Address (LBA): Which guarantees that the data is synthetic workloads and enterprise traces and concluded recovered from the right location; this is the logical that serial interface to flash memory is a bottleneck for performance [8]. While SATA Express/AHCI has the is the physical sector on the rotating disk. advantage of legacy software compatibility, the AHCI Correct Version of Data: This is to ensure that the current interface does not provide ideal performance when communicating to a PCIe SSD. This is on account of AHCI is created during a period when the motivation directly overwrite the older data. Definition of Data behind the HBA in a system is to interface the Integrity is, maintaining and assuring the accuracy and CPU/Memory subsystem with the very slower rotating disk storage subsystem. This kind of interface has some inherent inefficiency when connected to SSD, which acts algorithms are ECC, CRC and correct address translation much more like DRAM than spinning media. NVMe via logical block address [10]. planned starting from the earliest stage to utilize the Generic methods for the error detection and correction are: minimum latency of today's PCIe-based SSD's and the • Knowing there was an error! parallelism of today's CPU's, different platforms and Point to point Integrity Checking, avoid silent data applications. At a high stage, the important points of corruption, misdirected writes, internal ECC/parity and interest of NVMe over AHCI relate to the ability to address corruption checks. attempt parallelism in host software and hardware, showed by variations depth command queues, interrupt handling, the quantity of un-cacheable register accesses etc. [9].

B. Stability

performance is more workload SSD sensitive. Performance varies substantially if write requests are sequential or random (their enterprise traces are largely random; their synthetic traces are largely sequential; the performance improvements appeared for the synthetic traces are much more noteworthy than those appeared for the actual traces).

Moreover, the workloads utilized as a part of study are read oriented with roughly a 2:1 read-to-write ratio, which helps to hide the problem of moderate writes in an SSD. In any case, in computer applications (user-driven workloads), there tends to be a much more proportion of writes: in workloads, author seesa 50:50 ratio, which would tend to uncover flash's write issue. User driven workloads are not one-sided towards sequential or random requests but rather give a mix of random and sequential writes at a given time interval [8].

errors as a consequence of hardware errors in the NAND flash memory? The drive controller screens the read process and can correct hardware read errors up to a specific level. If successful then ECC will enable the drive to provide the right data back to the user.

Cyclic Redundancy Check (CRC): Which gives "end-toend" insurance by guaranteeing that the data written is the same data returned when read. As information comes in over the interface, the drive controller produces a CRC esteem and inserts it with the file's other metadata. At the point when data is recovered, the controller checks to guarantee that the proper CRC value is available. In any case, if data does not match, CRC can distinguish that the error or the mistake has happened. It can't correct it, but it does prevent "silent data corruption".

Correct Address Translation by means of Logical Block mapping of the flash memory blocks. In case of HDD this

version of data is returned, rather than the stale version in SSDs. This is not an issue for HDDs because they can consistency of data over its entire life-cycle which SSDs are capable to maintain. Important data integrity

• Preventing/Correcting Errors

Robust Error Correction: low-density parity-check (LDPC) is an iterative coding technique requires more run-time, which gives better error correction but lower throughput [11].

D. Power efficiency

Advanced Host Controller Interface (AHCI) Link Power Management is a method where the SATA AHCI controller puts the SATA link connection to the internal SSD disk into a very low power mode when there's no IO (input/output) activity for some time. The SSD controller naturally returns the link back into active power state when there's real work to be done like I/O operation. This is performed to save power consumption by SSD.

Support for the setting of power models using the Set Features command as mentioned in SATA specification document. Management of various power states using the power models (which power model is set via Set Features command). Less power utilization prompts better thermal dissipation and reliability. To increase performance of SSD controller Adaptive Voltage Scaling (AVS)

technology can also be used [12].

E. Security

Self-encrypting SSD drives keep your information safe regardless of the possibility that your drives are lost or stolen. Secure Erase keep all data on the hard drive hidden in less than a second through a cryptographic erase using data encryption key. So you can return, reuse or discard of the drive safely. Auto-Lock automatically locks the SSD drive and secures information the instant a drive is removed from a system, or when the drive or system is turned off [13]. The Opal Storage Specification is a set of specifications for storage devices and these features enhance their security. Also it defines specification for self-encrypting drives (SED). The specification is published by the Trusted Computing Group Storage Workgroup [14].

IV.METHODOLOGY FOR EXTRACTING PERFORMANCE PARAMETERS IN SSDS

A. Experiment Environment

This section elaborates more on simulation tools.

The DiskSim Simulation Environment: DiskSim is an efficient, precise and exceptionally configurable storage disk system simulator which is used to understand various aspects of storage subsystem architecture. It includes modulesand methodsthat simulate storage disks, intermediate controllers, request schedulers, buses, device drivers, disk block caches and disk array data organizations. Some parameters and its description are given in Table II [15]. These parameters are more related to the SSD design specifications for example cache memory, I/Os and synthetic workloads etc.

 TABLE II DISKSIM PARAMETER FILE CONFIGURATION

Configuration			
Parameter	Description		
disksim global	Global Block		
disksim stats	Stats Block		
disksimiosim	iosim Block		
disksimiodriver	I/O Subsystem Component		
	Specifications		
disksim bus	Buses		
disksimcachemem	Memory Caches		
disksimcachedev	Cache Devices		
disksimlogorg	Disk Array Data		
	Organizations		
disksimpf	Process-Flow Parameters		
disksimsynthio	Traces and Synthetic		
	Workloads		

EagleTree: EagleTree addresses actual SSD configuration related issues and enables a principled investigation of SSD-Based algorithms. The demonstration scenario explains the design space for algorithms based on an SSDbased I/O stack and shows how researchers and practitioners can utilize EagleTree to perform tractable investigations of this complex design space. EagleTree

configuration details are given in Table III [16]. Table III contains the basic SSD configurations which are considered while designing the SSDs. Some of these parameters are different timing delays, memory size like page, block size and controller specifications etc.

TABLE III EAGLETREE CONFIGURATION

Operation Timings (µs)				
BUS_CTRL_DELAY:	1			
BUS_DATA_DELAY:	10			
PAGE_READ_DELAY:	5			
PAGE_WRITE_DELAY:	20			
BLOCK_ERASE_DELAY:	60			
SSD Architecture				
SSD_SIZE:	4			
PACKAGE_SIZE:	2			
DIE_SIZE:	1			
PLANE_SIZE:	1024			
BLOCK_SIZE:	128			
PAGE_SIZE:	4096			
MAX_SSD_QUEUE_SIZE:	16			
OVER_PROVISIONING_FACTOR:	0.7			
Controller				
BLOCK_MANAGER_ID:	0			
GREED_SCALE:	2			
MAX_CONCURRENT_GC_OPS:	8			
MAX_REPEATED_COPY_BACKS_AL				
LOWED:	0			
MAX_ITEMS_IN_COPY_BACK_MAP:	1024			
WRITE_DEADLINE:	1000000			
READ_DEADLINE:	1000000			
ENABLE_WEAR_LEVELING:	0			
Open Interface				
ENABLE_TAGGING:	0			
Operating System				
OS_SCHEDULER:	0			

TABLE IV FLASHSIM SIMULATION PARAMETERS

Default simulation parameters				
Flash Type	Large Block			
Page (Data)	2KB			
Page (OOB)	64KB			
Block	(128KB+4KB)			
Interface	SATA			
GC	Yes			
Wear-leveling	Implicit/Explicit			
FTL Type	Page/FAST/DFTL			
Access Time				
Page Read	130.9 us			
Page Write	405.9 us			
Block Erase	1.5 ms			
Energy Consumption				
Page Read	4.72uJ			
Page Write	38.04uJ			
Block Erase	527.68uJ			

FlashSim: This simulation tool helps to get deep into In Table V, for Case 1 to 5; the values of two parameters specification parameters of SSD. Details of Default PAGE READ DELAY and PAGE WRITE DELAY are simulation parameters are given in Table IV [17]. These changed and observed the write time. In case 5 the block parameters are considered while designing the prototype size is changed from 64 to 4 which decreases the average of SSD. Some of the important parameters are memory size for example page and block size, access delays and In Table VI, again changed the values of two parameters energy consumption etc.

B. Assumptions on SSD performance

Following are the best practices for SSD performance increases the average write time. Corresponding graph is measurement according to Micron Technology, Inc. as shown in figure 2. document [17].

1) The enterprise SSD performance measurement assumptions:

• Drive fill state: The drive should be always 100% full.

• Accesses: It is being accessed 100% of the time (means the drive gets no interface idle time).

• Decisions: The enterprise market picks undertaking SSDs in view of their performance in steady state, full and most pessimistic scenario are not the same thing.

• Consequences of failure: Failure is catastrophic for different users.

2) Client SSD performance measurement assumptions:

• Drive fill state: The drive has less than half of its user space occupied.

• Accesses: This can be accessed a maximum of 8 hours a day, 5 days a week.

• Decisions: The client market picks enterprise SSDs in view of their performance in the fresh- out-of-box (FOB) state. In case of SSDs FOB means there were very less or no program/erase (P/E) cycles since the device was manufactured.

• Consequences of failure: Failure is catastrophic for a single user.

V. PERFORMANCE EVALUATION

A. Experimental Setup

Experimental setup needs some knowledge about programming languages like C and C++. Modify the configuration file according to requirement and execute the make command.

The details available for commercial SSDs are insufficient for modeling them precisely. The study on modeling and simulation has always been an important tool to give the knowledge in the internal behaviors of the storage device to comprehend the design trade-offs, to narrow down the design spaces and to reduce the prototyping endeavors. Instead of checking performance on various platforms with different configuration, look at the performance parameters on the same platforms with the same configurations. Two simulation tools EagleTree and FlashSim are used for read/write performance comparison analysis.

Details of simulation parameters are given in Table V, VI time is always more for both the values of PAGE READ and corresponding graphs are shown in figure 1 and figure DELAY and PAGE WRITE DELAY. 3) If there is an 2. In both graphs X axis represents the performance increase the value of any parameter PAGE READ parameters and Y axis represents the values (in unit time) DELAY or PAGE WRITE DELAY then it will increase for those parameters.

read/write time. Corresponding graph is shown in figure 1. PAGE READ DELAY and PAGE WRITE DELAY then observed the write time and read time also. In case 5 the RAM WRITE DELAY is changed from 1 to 2, which

TABLE V EAGLETREESIMULATION RESULTS

Parameter	Case 1	Case 2	Case 3	Case 4	Case 5
PAGE_READ_DELAY	5	65	5	5	65
PAGE_WRITE_DELAY	20	35	20	20	35
Write time	33.767	102.191	33.767	33.767	107.992
Read Time	43.480	318.986	43.480	43.480	304.889

Parameter	Case 1	Case 2	Case 3	Case 4	Case 5
PAGE_REA D_DELAY	25	25	1	65	65
PAGE_WRIT E_DELAY	300	30	1	35	35
Write time	325.04	55.04	2.04	142.04	100.04

B. Experimental Results and analysis

Experimental setup is run on CentOS 7 following graphs as shown in figure 1 and 2 are used for analysis of read and write time measurement.

The target parameters for SSDs performance are PAGE READ DELAY, PAGE WRITE DELAY, RAM_WRITE_DELAY BLOCK SIZE. and The experimental results show that 1) sequential write is less costly than sequential read as both FlashSim and EagleTree use sequential read/write operations. 2) Write the average page write time linearly.

VI. CONCLUSION

Solid state disks (SSDs) have numerous points of interest over hard disk drives, including better reliability, performance, durability, security and power efficiency. The characteristics of SSDs are more related to NAND flash memory. To accomplish the maximum performance improvement with SSDs, operating systems or applications; it is necessary to understand the critical performance parameters of SSDs to fine-tune their accesses. NVMe interface provides high performance than SATA because of parallelism in host hardware and software. Major performance parameters are read and write operations. Read operation is performed page by page and having high speed as compared to HDDs. Read performance is not affected due to location of data storage on SSD. Read operation is less costly (in terms of time and number of operations) than write because write operation first erases the data and then writes the user data. Erase operation is performed block by block. Sequential read/ write operation is faster than random read/ write because it uses the sequential physical addresses to perform these operations. How quicker a SSDs can perform I/O tasks is calculated in Input/Output Operations per Second (IOPS) and varies depending on the kind (sequential/random) of I/O being performed. The greater the number of IOPS, the better the performance. ECC, CRC and LDPC are the techniques which are used to maintain the data integrity in SSDs. Different power management techniques like SATA link power management, device initiated power management, host initiated power management and advanced power management reduce the power consumption in SSD and hence increase performance of SSDs.

In any case, the internal hardware and software organizations change significantly among SSDs and thus, each SSD shows different parameters which impact the overall performance. Parameter-aware management leads to huge performance improvements for expansive file accesses by performing SSD-specific optimizations [2] [18].

REFERENCES

- K. Hess. 2011: Year of the SSD? [Online]. Available: http://www. datacenterknowledge.com/archives/2011/02/17/ 2011-year-of-thessd/, Feb 2011.
- [2] H. Kim and U. Ramachandran, "FlashLite: A user-level library to enhance durability of SSD for P2P file sharing," in Proc. IEEE ICDCS, Jun. 2009, pp. 534–541.
- Best Practices for SSD Performance Measurement. [Online]. Available [May 2016]: https://www.micron.com/~/media/documents/products/technicalmarketing -brief/brief_ssd_performance_measure.pdf
- [4] S. Boboila and P. Desnoyers, "Write Endurance in Flash Drives: Measurements and Analysis", Proceedings of the 8th USENIX conference on File and Storage Technologies (FAST'10), Feb. 2010
- [5] T. Pritchett, M. Thottethodi, "SieveStore: a highly-selective, ensemble-level disk cache for cost-performance", Proceedings of the 37th annual international symposium on Computer Architecture (ISCA'10), pp. 163-174, 2010
- [6] T. Kgil, D. Roberts, and T. Mudge, "Improving NAND Flash Based Disk Caches", Proceedings of the 35th International Symposium on Computer Architecture (ISCA'08), pp. 327-338, Jun. 2008.
- [7] SSD Performance A Primer, An Introduction to Solid State Drive Performance, Evaluation and Test. [Online]. Available [May 2016]:

http://www.snia.org/sites/default/files/SNIASSSI.SSDPerformance-APrimer2013.pdf

- [8] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and R. Panigraphy. "Design Tradeoffs for SSD Performance." In Proc. USENIX Annual Technical Conference (USENIX 2008), Boston, MA, June 2008.
- [9] AHCI and NVMe as Interfaces for SATA Express[™] Devices -Overview. [Online]. Available [May 2016]: https://www.sataio.org/sites/default/files/documents/NVMe%20and%20AHCI%20a s%20SATA%20Express%20Interface%20Options%20-%20Whitepaper_.pdf
- [10] Data Integrity Challenges in flash SSD Design.[Online]. Available [May 2016]: http://www.storagesearch.com/sandforce-art1.html
- The Nibbles and Bits of SSD Data Integrity. [Online]. Available [May 2016]: http://www.flashmemorysummit.com/English/Collaterals/Proceedin gs/2013/20130813_B12_Cohen.pdf
- [12] Advanced Power Technologies for SSD Applications. [Online]. Available [May 2016]: http://www.flashmemorysummit.com/ Engli sh/Collaterals/Proceedings/2013/20130815_301B_Vainberg.pdf
- [13] Drive Security & Disk Encryption. [Online]. Available [May 2016] : http://www.seagate.com/in/en/solutions/security/
- [14] Developers Storage Specifications. [Online]. Available [May 2016]: http://www.trustedcomputinggroup.org/developers/storage/ specifications
- [15] The DiskSim Simulation Environment. [Online]. Available: http://www.pdl.cmu.edu/DiskSim/
- [16] Martin KjærSvendsen, MatiasBjørling, Philippe Bonnet, Luc Bouganim, "EagleTree: exploring the design space of SSD-based algorithms", Proceedings of the VLDB Endowment Volume 6 Issue 12, Pp 1290-1293, August 2013
- [17] Youngjae Kim; Tauras, B.; Gupta, A.; Urgaonkar, B., "FlashSim: A Simulator for NAND Flash-Based Solid-State Drives," in Advances in System Simulation, 2009. SIMUL '09. First International Conference on , vol., no., pp.125-131, 20-25 Sept. 2009
- [18] Jaehong Kim; SangwonSeo; Dawoon Jung; Jin-Soo Kim; Jaehyuk Huh, "Parameter-Aware I/O Management for Solid State Disks (SSDs)," in Computers, IEEE Transactions on, vol.61, no.5, pp.636-649, May 2012